污水用潜水搅拌器是一种强制搅拌设备,可适用于各类污水处理的搅拌,能对周围水体进行搅拌、混合,从而提高污水处理效率。
污水用搅拌器的品牌选择和设备选型对提高污水厂污水处理率和优化污泥排放具有非常关键的作用。潜水搅拌器作为一种在全浸没条件下连续工作,兼搅拌混合和推流功能为一体的浸没式设备,在污水处理领域有着广泛的应用,在活性污泥工艺中采用潜水搅拌器可防止污泥沉积在池底部,将污水与回流和再循环水流混合在一起使悬浮固体均匀分布,从而使微生物与污水之间有充分的接触。
在城市污水处理厂污水处理过程中,由于污水处理工艺的需要,污水和污泥的混合液必须以一定的流速在池体内循环流动。如果流速过低,不仅会使污水处理无法连续进行,而且会使混合液中的污泥絮凝沉淀,使池底大量积泥,大大减少池体的有效容积,降低处理效果,影响出水水质。因此,需要借助水力机械—潜水搅拌器的搅拌、推动,使得混合液保持一定流速,防止污泥沉积在池底部,并将污水与回流和再循环水流混合在一起使悬浮固体均匀分布,从而使微生物与污水之间有充分的接触,达到混合搅拌、推进的作用。
本次潜水搅拌器技术专题结合搅拌器设备满意度调查结果,进行总结、分析和比选,力争为广大水
业同行提供专业参考。
在污水处理厂污水处理中,为使得混合液保持一定流速,防止污泥沉积在池底部,并将污水与回流和再循环水流混合在一起使悬浮固体均匀分布,不仅需要确定潜水搅拌器的型号,而且还需要确定搅拌器在池体内合理、
高效的分布,这就要建立池体的搅拌系统。
搅拌系统设计中需要考虑的通常是整体流速(m/s)* N能量密度(W/m)两组因素。根据目前已经广泛应用的高效的搅拌系统,能量密度标准已经转而用来表示最大能耗了,一般只需考虑整体流速(m/s)就
能得出搅拌系统。
有效的搅拌是在整体流动条件下获得的,水池中的介质整体都在发生运动,并且成为搅拌工艺的一部分。污水处理厂池体的整体流速通常为0.1~0 .4 m/s。迄今为止,整体流速是污水处理中最可行的对通用搅拌状态进行定量分析的方法,而以沉积量、活体积、污泥分布均匀度等参数来定量表示搅拌度的工作正在进行之
中。据资料显示,使用计算机流体动力学(CFD)可以准确地预测潜水搅拌器所产生的流量。根据潜水搅拌器的流量较核搅拌器推力,就能形象地得出搅拌系统中个组搅拌器的合理位置。依照搅拌器推力和搅拌器位置,正确使用CFD可以进一步增进搅拌器系统设计工具的准确性。根据上述步骤,可以较准确地计算出合理、高效的潜水搅拌器的搅拌系统。
一、搅拌器设计因素分析
搅拌器设计中通常需要考虑的因素是能量密度(W/m3)和整体流速(m/s),特别是在污水处理中。由于已
经出现了新的高效的搅拌系统,故能量密度标准已经转而用来表示最大能耗了。
有效的搅拌是在整体流动条件下获得的,水池中的介质整体都在发生运动,并且成为搅拌工艺的一部
分。整体流速通常为0.15~0.35m/s,现在往往被用作搅拌程度的设计参数。由于无循环通道的水池也存在
着如何正确定义和测量所需流速的问题,故只在学术上规定一个整体流速是不够的。直到今天,整体流速
仍是污水处理中最可行的对通用搅拌状态进行定量分析的方法,而以沉积量、活体积、污泥分布均匀度等
参数来定量表示搅拌度的工作正在进行之中。
整体流动是由搅拌器射流的动量驱动的,其根本上就是搅拌器的反应推力,它与搅拌器的位置共同决
定着所产生的流动形式。如果搅拌器的位置和某一应用中所需要的推力以及搅拌器的推力数据已知,就可
据此进行设备选型。
二、流量的计算
最近的一篇报道显示,使用计算机流体动力学(CFD)可以准确地预测潜水搅拌器所产生的流量。为了
计算流量,必须解出纳维—斯托克斯方程,这可依靠计算机的帮助并采用雷诺数平均的方法,还需要正确
选择湍流、搅拌器型式以及计算中所采用的计算网格。解纳维—斯托克斯方程时所施加的力必须包括在内,如射流冲力(即搅拌器推力,单位:牛顿)。另外,与搅拌器力矩(角动量通量)也有一定的关系,但没有那么重要。
依照搅拌器推力和搅拌器位置,正确使用CFD可以进一步增进搅拌器系统设计工具的准确性。在这些
设计中,搅拌器推力是最重要的定量因素。